CHEMICAL KINETICS

Rates of a Reactions (mol L-1 s-1)

Rate of a reaction

Change in concentration of species

Time

For a reaction, $mA + nB \rightarrow pC + qD$

$$\frac{-1}{m}\frac{d[A]}{dt} = \frac{-1}{n}\frac{d[B]}{dt} = \frac{+1}{p}\frac{d[C]}{dt} = \frac{+1}{q}\frac{d[D]}{dt}$$

- Reactant R, Decreases with time
- Product P, Increases with time

Factors Influencing Rate of a Reaction

- For every 10° rise in Temperature, rate becomes 2x
- Catalyst increases the rate without getting involved
- Greater Surface Area of reactant, faster the reaction
- Light (hv) increases the rate in some cases.

Rate Law and Rate Constant

For a reaction, $mA + nB \rightarrow pC + qD$ Rate $\propto [A]^x[B]^y \implies \text{Rate} = k[A]^x[B]^y$

k depends on Temperature

k in independent of conc'

k defines speed of the reaction, Large k - fast reaction

Order of the reaction = x + y = m + n (for elementary rxn)

- It can be Zero, Positive or Fraction.
- For a multistep reaction, order is not equal to sum of stoichiometry, it is calculated using slowest step of reaction. Order = x + y

Molecularity = No. of Particles participating in reaction

- Molecularity ranges between 1 to 3. NEVER 0.
- For a single step reaction, Molecularity = Order.

Integrated Rate laws & Graphs

Zero Order Reaction, Units: mol L-1 s-1

Differential Rate Law -d[R]/dt = k

 $kt = [R_o] - [R]$ Integrated Rate Law

Example: Adsorption of gases on metal surface at high P.

 $[R_0] = a$ (initial conc.); [R] = a-x (Conc. after t)

First Order Reaction, Units: s-1

- Differential Rate Law -d[R]/dt = k[R]
- Integrated Rate Law $kt = 2.303 \log {[R_o]/[R]}$

Pseudo First order reactions

Reactions which are second order but tend to behave as first order reactions. e.g. Hydrolysis of Ester in acid

$$CH_3COOC_2H_5(aq.) + H_2O(l) \xrightarrow{H^+} CH_3COOH(aq.) + C_2H_5OH(aq.)$$

Rate =
$$k[CH_3COOC_2H_5][H_2O]$$

Rate =
$$k'[CH_3COOC_2H_5]$$

Some examples of first order rate constants

Gas phase reactions A (g) \rightarrow B(g) + C (g)

Partial	pressu	ire of	A given
Initia	lly, Po	and a	t t, Pt

$$k = 2.303 \log \frac{P_o}{P_t}$$

Total pressure given Initially, Po and at t, Pt

$$k = 2.303 \log \frac{P_o}{2P_o - P_t}$$

General nth order terms

• Units (mol L ⁻¹) ¹⁻	1-n(time)-1
--	-------------

$$kt = \frac{1}{n-1} \left(\frac{1}{[R]^{n-1}} - \frac{1}{[R_o]^{n-1}} \right)$$

$$t_{1/2} = \frac{1}{k(n-1)} \left[\frac{2^{n-1}-1}{a^{n-1}} \right]$$

Effect of Catalyst on rate

A catalyst provides an alternative route for a reaction with a lower activation energy.

Thus, Speeds up reaction

(initial conc.); [R] = a-x (Conc. after t)

Half life and relations

t	$[R_o]$	
11 -	2k	

Zero Order

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$t_{\frac{1}{2}} = \frac{1}{k[R_o]}$$

Important Relations

$$t_{75\%} = 2 t_{1/2}$$

$$t_{99.9\%} = 10 t_{1/2}$$

Substance left after n half lives

$$[R_o]_{2^n}$$

Temperature Dependence of rate of reaction

Arrhenius eqn: Relates Temperature with rate constant.

$$k = Ae^{-E_a/RT}$$

- E a = Activation Energy
- A = Frequency factor

Slope:-E_a/R Intercept:InA

1/T E₂

 $lnk = lnA - \frac{E_a}{RT}$

For a a reaction at two different temperatures

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Temperature Coefficient

Rate constant doubles or triples with every 10° rise in temperature

$$\frac{k_t + 10}{k_t} \approx 2$$

Collision theory

- The rate of a chemical reaction is proportional to the number of collisions between reactant molecules.
- Only Effective collision results in Products.